Efficient contact tracing

Apara Venkat Department of Statistics University of Washington

Data Science for Policy Evaluation November 18, 2021 Johns Hopkins University

We have a list of people infected with a disease. They may have passed on this infection to others.

Goal: maximize number of infected people we identify. Limited number of tests.

We have a list of people infected with a disease. They may have passed on this infection to others.

Goal: maximize number of infected people we identify. There is heterogeneity in infectiousness.

Goal: maximize number of infected people we identify. There is heterogeneity in infectiousness. Each person infects their contacts at a different rate.

Goal: maximize number of infected people we identify. There is heterogeneity in infectiousness. Each person infects their contacts at a different rate.

Goal: maximize number of infected people we identify. There is heterogeneity in infectiousness.

Can we extract information from this uncertainty to devise better strategies?

Goal: maximize number of infected people we identify. There is heterogeneity in infectiousness.

Prior to March 2020, we were commonly exposed to infections that spread slowly infections that are contained within a region

- Can we extract information from this uncertainty to devise better strategies?

Outline

1. The problem 2. Mortal multi-armed bandit 3. Data and results

Outline

1. The problem 2. Mortal multi-armed bandit 3. Data and results

Goal: maximize number of infected people we identify.

1. There is heterogeneity in infectiousness Each person infects their contacts at a different rate.

Goal: maximize number of infected people we identify.

1. There is heterogeneity in infectiousness

This is called the multi-armed bandit problem.

We play a slot machine by pulling arms. Each arm gives a random reward. Our goal is to maximize this reward.

Goal: maximize number of infected people we identify.

- 1. There is heterogeneity in infectiousness.
- 2. There is heterogeneity in number of contacts. Each person comes into contact with a different number of people.

Goal: maximize number of infected people we identify.

- 1. There is heterogeneity in infectiousness.
- 2. There is heterogeneity in number of contacts.
- 3. Set of people whose contacts we want to test changes. We add new people to trace when we find a new infection. We remove people when we finish testing all of their contacts.

Goal: maximize number of infected people we identify.

- 1. There is heterogeneity in infectiousness.
- 2. There is heterogeneity in number of contacts.
- 3. Set of people whose contacts we want to test changes.

This is called the mortal multi-armed bandit problem.

Outline

1. The problem 2. Mortal multi-armed bandit 3. Data and results

1. Randomly choose a person to trace based on their degree.

- 1. Randomly choose a person to trace based on their degree.
- 2. Test a subset (of size *n*) of contacts.
- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts.

1. Randomly choose a person to trace based on their degree. 2. Test a subset (of size *n*) of contacts.

- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts.

1. Randomly choose a person to trace based on their degree. 2. Test a subset (of size *n*) of contacts.

- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts.

1. Randomly choose a person to trace based on their degree. 2. Test a subset (of size *n*) of contacts.

- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts.

1. Randomly choose a person to trace based on their degree 2. Test a subset (of size *n*) of contacts 4. Go to step 1

- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts

- 1. Randomly choose a person to trace based on their degree.
- 2. Test a subset (of size *n*) of contacts.
- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts.
- 4. Go to step 1.

We choose n and k from the dataset.*

- 1. Randomly choose a person to trace based on their degree.
- 2. Test a subset (of size *n*) of contacts.
- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts. 4. Go to step 1.
- We choose n and k from the dataset.*
- We are able to capture the heterogeneity by imposing a threshold. Estimate infectivity by testing a small subset of contacts.

- 1. Randomly choose a person to trace based on their degree.
- 2. Test a subset (of size *n*) of contacts.
- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts. 4. Go to step 1.

We choose n and k from the dataset.*

We are able to capture the heterogeneity by imposing a threshold. Estimate infectivity by testing a small subset of contacts. If infectivity is larger than k/n, we test all contacts. We believe this person is highly infectious. So it is worth using more tests.

- 1. Randomly choose a person to trace based on their degree.
- 2. Test a subset (of size *n*) of contacts.
- 3. If we find enough ($k \leq n$) positives in this subset, we test all contacts. 4. Go to step 1.

We choose n and k from the dataset.*

We are able to capture the heterogeneity by imposing a threshold. Estimate infectivity by testing a small subset of contacts. If infectivity is larger than k/n, we test all contacts. We believe this person is highly infectious. So it is worth using more tests. Else, we move on to a different person. We believe this person is not highly infectious. So it is not worth using more tests.

Outline

1. The problem 2. Mortal multi-armed bandit 3. Data and results

Data and results

Pakistan ~165,000 people traced ~1.9 million people tested ~30,000 people infected [~0.5 million were awaiting testing and results at time of collection]

India [Punjab] ~600 people traced ~18,000 people tested ~1,600 people infected

Data and results

Data and results

Pakistan

Standard baseline

1250000 1000000

Pakistan

Standard baseline Mortal multi-armed bandit (n = 4, k = 1)

Punjab

Standard baseline Mortal multi-armed bandit (n = 3, k = 1)

Conclusion

Formulated contact tracing as a multi-armed bandit problem.

Conclusion

Formulated contact tracing as a multi-armed bandit problem.

Captured heterogeneity in infectivity. More efficient than standard strategies.

Conclusion

Formulated contact tracing as a multi-armed bandit problem.

Captured heterogeneity in infectivity. More efficient than standard strategies.

Even just a small increase in number of infections we identify can help us to better control the spread of the disease, especially in the early stages.

Punjab

Acknowledgements

Tyler McCormick

Jishnu Das

Eva Tourangeau