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Abstract 

 

1. Introduction 

Ever since humans landed on the moon, it became clear than deep space travel is a possibility in 

the future. One of the biggest issues faced by satellites and probes that we have sent into space is 

that they do are unable to react to the presence of other astronomical objects real time. This means 

that they must rely on scientists back at Earth for navigation. In addition, they do not have the 

ability to recognize an incoming asteroid on their own. Satellite images get sent back to Earth for 

scientists to study the situation. Often, this delay can cause a catastrophe. At the least, the time 

delay slows down the mission progress and causes overhead. 

This report aims at identifying and tracking craters in images for optical navigation in 

space. We first survey at existing image processing techniques[3], [4] that are likely to help 

us in identifying craters. We then proceed to bootstrapping a deep neural network[1], [2], [8] 

classifier with the help of TensorFlow Object Detection API[11] and images from NASA’s 

Detecting Crater Impact Challenge[9]. We then implement a preliminary tracking 

algorithm that stores images and computes mean squared error to detect if the crater has 

already been seen before. 



In this report, we attempt to provide a method to track features on astronomical objects. We will 

first identify potential craters on the astronomical object. Then we will start tracking these potential 

crates and calculate how far these craters have been displaced since the last image was taken. Using 

this information, it is possible to calculate relative positions of the satellite. This feature tracking 

technique will enable optical navigation allowing for the satellite to identify and respond to 

incoming threats real time. Existing technology allows us to perform these actions manually. The 

novelty of this paper lies in the fact that the entire process will be automated with a robust and fast 

feature tracking method. 

The rest of the paper is divided as follows: (2) will focus on related works done in the past; (3) 

will discuss the methods we used; (4) will go into the detail of the experiments performed; (5) will 

discuss the results we got from our experiments and; (6) will summarize the results and discuss 

scope for further research. 

2. Related Works 

There has been a lot of work, especially in the past decade, in the field of image processing and 

object recognition with the resurgence of neural networks and deep learning. These range from 

relatively shallow convolutional neural networks, introduced in Very Deep Convolutional Neural 

Networks for Large-Scale Image Recognition by Karen Simonyan and Andrew Zisserman in 

2014[1], to the complex inception model introduced in GoogLeNet by Szegedy, Liu et. al in 2015[2]. 

Another interesting work was performing region based convolutions as explained by Girshick, 

Donahue, et. al. in Rich feature hierarchies for accurate object detection and semantic 

segmentation in 2014[3]. 

https://arxiv.org/find/cs/1/au:+Simonyan_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zisserman_A/0/1/0/all/0/1


On the side of detecting craters, extensive research has been conducted trying to detect craters for 

the purpose of navigation. One particularly interesting experiment was done by Urbach and 

Stepinski (Automatic detection of sub-km craters in high resolution planetary images in 2009[4] 

where they invert images to extract shadows and highlighted areas of an image. After some 

preprocessing, they were able to extract crater candidates that was fed into a classifier. This 

technique relies on the fact that all craters have a highlighted and shadowed region arising from 

their physical structure. 

In tracking, Tracking-Learning-Detection by Kalal, Mikolajczyk, and Matas in 2010[5], describes 

a method for tracking objects in videos with a self-evaluating mechanism to help the tracker 

increase its accuracy the longer it tracks the object. This paper also described how the tracker can 

remember the object and begins tracking it again even after it goes out of the frame. 

Another deeply researched area is simultaneous localization and mapping (SLAM). It is aimed at 

solving tasks carried out by mobile robots, such as search and rescue. This is useful in tasks where 

no accurate map exists, and has no reliance on external GPS. Since this is used in mapping, and 

navigating areas where no one has gone before, this technique could be another way to approach 

the problem at hand. It relies on making a 3D model of the object being navigated, and has shown 

promising results when used with drones. This work is being done by Raul Mur-Artal et. al[8]. It 

has also been investigated for spacecraft rendezvous as seen in Application of ORB-SLAM to 

Spacecraft Non-Cooperative Rendezvous[7]. 

3. Methods 



This research area is very broad and involves three big topics – identification of features, tracking 

of features, and navigation. This report will mainly focus on the feature identification and will 

briefly touch upon tracking. 

Our workflow, for tackling the identification of features, is to design two different models that 

achieve the same results simultaneously. The first will use pure image processing techniques to 

identify craters. The second will be a mixture of image processing and machine learning 

techniques. Once both these models have been designed, we will evaluate both of them on the 

basis of computation speed (fastness), efficiency (hardware and power requirements), and 

robustness (how good are the detected craters). This study should exhibit the pros and cons of both 

methods, and also verify which are feasible for our intended use. Then we will either choose one 

of either models, or a combination of both. 

To answer the second question, tracking the identified features, we will develop on the models we 

designed earlier and implement a tracker that keeps track of the identified features in multiple 

frames. One way to go about this would be to use a modified implementation of the algorithm 

described in Tracking-Learning-Detection[5]. Eventually, we will compare both implementations 

and once again choose the better model on the basis on speed, efficiency, and robustness. 

Our results would be given to a Kalman filter in order to get the spacecraft state estimates. The 

reach goal of this project is to make it possible to use our algorithm with existing techniques for 

navigation. 

4. Experiments 

4.1 Machine Learning 



We first implemented a simple linear regression that will output a bounding box for craters. Then 

we took it further and developed a deep neural network. Finally, we implemented a convolutional 

neural network. For these experiments, we used Python along with Numpy and TensorFlow 

libraries. The data was obtained from NASA[9]. We, then used the TensorFlow Object Detection 

API[11] that allows researchers to use pre-trained models to train on their own datasets. We used 

the data obtained from NASA and trained our model on a pre-trained model on COCO dataset[10] 

using the Fast RCNN algorithm[8]. Figure 1 shows some sample images collected from the NASA 

Detecting Crater Impact Challenge dataset[9]. 

        

Figure 1 – Sample images from the NASA dataset 

 

4.2 Image Processing 

We first used off-the-shelf feature detection algorithms to test their robustness. Then, we used pre-

processing techniques described in Automatic detection of sub-km craters in high resolution 

planetary images. This involves inverting image, background removal, applying a power filter, 

shape filter and combining the inverted and non-inverted images to combine highlights and 

shadows present in craters. This can be used to extract crater candidates. Another technique used 



will be applying a Fourier transformation to study any patterns that are consistent with presence 

of craters. Applying convolutions to these might yield interesting results. For these simulations, 

we will be using Python and OpenCV[12]. OpenCV offers many off-the-shelf feature detectors like 

Hough Circle Finding method and Harris Corner Detection. It also offers many other image 

processing functionalities. 

 

5. Results 

Each subsection describes the results derived from the experiments performed in the corresponding 

subsection number in the (4). 

5.1 Machine Learning 

The linear regression model performed very badly. The bounding box values that the trained model 

output was often negative, or beyond the size of the image. The neural network performed better 

in that aspect in that the bounding box was present inside the image. And it contained multiple 

craters inside it. However, it was not robust enough to identify significantly large craters, and 

picked smaller ones. This could be because one image was trained against multiple bounding 

boxes, which could have confused the model as to which one should be predicted. Convolutional 

neural networks could not be tested because they demanded large amounts of memory which could 

not be provided even by a powerful laptop. 

The model we got from using the TensorFlow Object Detection API performed well and could 

predict multiple craters in an image with ~95% confidence. Figure 2 shows an example result we 

got. 



We were also able to track craters in a video. However, some of the craters were not continously 

tracked. But, this will not greatly affect our navigation system as we do not need continous 

measurements. At the same time, this raises the question of tagging craters so that the computer 

recognizes a crater as either, previously seen, or a new crater. The object detection API does not 

provide a mechanism for tagging identified objects and “remembering” them. Right now, we are 

storing the identified crater with a unique ID and comparing it subsequently identified craters to 

test if the newly identified has already been identified. We calculate the mean squared error 

between the image being tagged and previously tagged image and assign the image a new tag if 

the error is greater than a manually selected threshold value. This naïve method’s results are not 

always as expected and sometimes the the same crater gets assigned with different tags and 

sometimes different craters get assigned with the same tag.  Figure 3 shows one such falsely tagged 

crater where two different craters get assigned with the same tag. This method could possibly cause 

more problems in the future if we start modelling lighting conditions and angles i.e., the algorithm 

should be able to recognize the crater in different lighting conditions and angles. 



 

Figure 2 - Sample results 



 

Figure 3 – Snapshot of our tagging algorithm in progress. Notice that 2 different craters get assigned the same ID. 

 

5.2 Image Processing 

Off-the-shelf feature detectors provided by OpenCV allow for decent crater findings, but need 

significant tuning. This leads to questions regarding robustness, and this is where machine learning 

might lead to better results. 

We are also tried taking Fourier transforms of the image to try to better identify craters. The 

spectral content of the images may help to filter out unwanted information, but also help us hone 

in on craters and other features by identifying spectral patterns. 

  



6. Conclusion 

We conclude that traditional image processing techniques fail at identifying craters in an image. 

We need lots of manual fine tuning and preprocessing to make it work. At the end of the day, we 

want to automate this process and this is where traditional algorithms fail. 

Using deep neural networks, with the TensorFlow Object Detection API, yields much better results 

and it is also efficient and inexpensive. But, for tracking we need to individually track the motion 

of craters. This is where this method lacks. There is no way to track craters. We implemented a 

naïve, but preliminary, tagging algorithm that stores images and calculates mean squared error to 

check if the crater has already been tagged. However, this will become computationally expensive 

if run for a long time. It also lacking in robustness in that it cannot identify the same crater in 

different lighting conditions and angles. 

Sophisticated methods that do exist for this purpose are computationally expensive and make the 

program unsuitable for our desired application. Further research needs to be done in this area 

before we can successfully use our program in actual simulations. 

Potential future research questions could explore more closely how feature tracking can help with 

identification and tagging and how to handle different lighting conditions and angles for more 

precise navigation. Finally, another topic that is more applicable would be implementing 

navigations filters that use these results as inputs. 
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