
Feature Tracking and Optical Navigation

Aparajithan Venkateswaran Thibaud Teil

Autonomous Vehicle Laboratory – Dr. Hanspeter Schaub

University of Colorado, Boulder

Abstract

1. Introduction

Ever since humans landed on the moon, it became clear than deep space travel is a possibility in

the future. One of the biggest issues faced by satellites and probes that we have sent into space is

that they do are unable to react to the presence of other astronomical objects real time. This means

that they must rely on scientists back at Earth for navigation. In addition, they do not have the

ability to recognize an incoming asteroid on their own. Satellite images get sent back to Earth for

scientists to study the situation. Often, this delay can cause a catastrophe. At the least, the time

delay slows down the mission progress and causes overhead.

This report aims at identifying and tracking craters in images for optical navigation in

space. We first survey at existing image processing techniques[3], [4] that are likely to help

us in identifying craters. We then proceed to bootstrapping a deep neural network[1], [2], [8]

classifier with the help of TensorFlow Object Detection API[11] and images from NASA’s

Detecting Crater Impact Challenge[9]. We then implement a preliminary tracking

algorithm that stores images and computes mean squared error to detect if the crater has

already been seen before.

In this report, we attempt to provide a method to track features on astronomical objects. We will

first identify potential craters on the astronomical object. Then we will start tracking these potential

crates and calculate how far these craters have been displaced since the last image was taken. Using

this information, it is possible to calculate relative positions of the satellite. This feature tracking

technique will enable optical navigation allowing for the satellite to identify and respond to

incoming threats real time. Existing technology allows us to perform these actions manually. The

novelty of this paper lies in the fact that the entire process will be automated with a robust and fast

feature tracking method.

The rest of the paper is divided as follows: (2) will focus on related works done in the past; (3)

will discuss the methods we used; (4) will go into the detail of the experiments performed; (5) will

discuss the results we got from our experiments and; (6) will summarize the results and discuss

scope for further research.

2. Related Works

There has been a lot of work, especially in the past decade, in the field of image processing and

object recognition with the resurgence of neural networks and deep learning. These range from

relatively shallow convolutional neural networks, introduced in Very Deep Convolutional Neural

Networks for Large-Scale Image Recognition by Karen Simonyan and Andrew Zisserman in

2014[1], to the complex inception model introduced in GoogLeNet by Szegedy, Liu et. al in 2015[2].

Another interesting work was performing region based convolutions as explained by Girshick,

Donahue, et. al. in Rich feature hierarchies for accurate object detection and semantic

segmentation in 2014[3].

https://arxiv.org/find/cs/1/au:+Simonyan_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zisserman_A/0/1/0/all/0/1

On the side of detecting craters, extensive research has been conducted trying to detect craters for

the purpose of navigation. One particularly interesting experiment was done by Urbach and

Stepinski (Automatic detection of sub-km craters in high resolution planetary images in 2009[4]

where they invert images to extract shadows and highlighted areas of an image. After some

preprocessing, they were able to extract crater candidates that was fed into a classifier. This

technique relies on the fact that all craters have a highlighted and shadowed region arising from

their physical structure.

In tracking, Tracking-Learning-Detection by Kalal, Mikolajczyk, and Matas in 2010[5], describes

a method for tracking objects in videos with a self-evaluating mechanism to help the tracker

increase its accuracy the longer it tracks the object. This paper also described how the tracker can

remember the object and begins tracking it again even after it goes out of the frame.

Another deeply researched area is simultaneous localization and mapping (SLAM). It is aimed at

solving tasks carried out by mobile robots, such as search and rescue. This is useful in tasks where

no accurate map exists, and has no reliance on external GPS. Since this is used in mapping, and

navigating areas where no one has gone before, this technique could be another way to approach

the problem at hand. It relies on making a 3D model of the object being navigated, and has shown

promising results when used with drones. This work is being done by Raul Mur-Artal et. al[8]. It

has also been investigated for spacecraft rendezvous as seen in Application of ORB-SLAM to

Spacecraft Non-Cooperative Rendezvous[7].

3. Methods

This research area is very broad and involves three big topics – identification of features, tracking

of features, and navigation. This report will mainly focus on the feature identification and will

briefly touch upon tracking.

Our workflow, for tackling the identification of features, is to design two different models that

achieve the same results simultaneously. The first will use pure image processing techniques to

identify craters. The second will be a mixture of image processing and machine learning

techniques. Once both these models have been designed, we will evaluate both of them on the

basis of computation speed (fastness), efficiency (hardware and power requirements), and

robustness (how good are the detected craters). This study should exhibit the pros and cons of both

methods, and also verify which are feasible for our intended use. Then we will either choose one

of either models, or a combination of both.

To answer the second question, tracking the identified features, we will develop on the models we

designed earlier and implement a tracker that keeps track of the identified features in multiple

frames. One way to go about this would be to use a modified implementation of the algorithm

described in Tracking-Learning-Detection[5]. Eventually, we will compare both implementations

and once again choose the better model on the basis on speed, efficiency, and robustness.

Our results would be given to a Kalman filter in order to get the spacecraft state estimates. The

reach goal of this project is to make it possible to use our algorithm with existing techniques for

navigation.

4. Experiments

4.1 Machine Learning

We first implemented a simple linear regression that will output a bounding box for craters. Then

we took it further and developed a deep neural network. Finally, we implemented a convolutional

neural network. For these experiments, we used Python along with Numpy and TensorFlow

libraries. The data was obtained from NASA[9]. We, then used the TensorFlow Object Detection

API[11] that allows researchers to use pre-trained models to train on their own datasets. We used

the data obtained from NASA and trained our model on a pre-trained model on COCO dataset[10]

using the Fast RCNN algorithm[8]. Figure 1 shows some sample images collected from the NASA

Detecting Crater Impact Challenge dataset[9].

Figure 1 – Sample images from the NASA dataset

4.2 Image Processing

We first used off-the-shelf feature detection algorithms to test their robustness. Then, we used pre-

processing techniques described in Automatic detection of sub-km craters in high resolution

planetary images. This involves inverting image, background removal, applying a power filter,

shape filter and combining the inverted and non-inverted images to combine highlights and

shadows present in craters. This can be used to extract crater candidates. Another technique used

will be applying a Fourier transformation to study any patterns that are consistent with presence

of craters. Applying convolutions to these might yield interesting results. For these simulations,

we will be using Python and OpenCV[12]. OpenCV offers many off-the-shelf feature detectors like

Hough Circle Finding method and Harris Corner Detection. It also offers many other image

processing functionalities.

5. Results

Each subsection describes the results derived from the experiments performed in the corresponding

subsection number in the (4).

5.1 Machine Learning

The linear regression model performed very badly. The bounding box values that the trained model

output was often negative, or beyond the size of the image. The neural network performed better

in that aspect in that the bounding box was present inside the image. And it contained multiple

craters inside it. However, it was not robust enough to identify significantly large craters, and

picked smaller ones. This could be because one image was trained against multiple bounding

boxes, which could have confused the model as to which one should be predicted. Convolutional

neural networks could not be tested because they demanded large amounts of memory which could

not be provided even by a powerful laptop.

The model we got from using the TensorFlow Object Detection API performed well and could

predict multiple craters in an image with ~95% confidence. Figure 2 shows an example result we

got.

We were also able to track craters in a video. However, some of the craters were not continously

tracked. But, this will not greatly affect our navigation system as we do not need continous

measurements. At the same time, this raises the question of tagging craters so that the computer

recognizes a crater as either, previously seen, or a new crater. The object detection API does not

provide a mechanism for tagging identified objects and “remembering” them. Right now, we are

storing the identified crater with a unique ID and comparing it subsequently identified craters to

test if the newly identified has already been identified. We calculate the mean squared error

between the image being tagged and previously tagged image and assign the image a new tag if

the error is greater than a manually selected threshold value. This naïve method’s results are not

always as expected and sometimes the the same crater gets assigned with different tags and

sometimes different craters get assigned with the same tag. Figure 3 shows one such falsely tagged

crater where two different craters get assigned with the same tag. This method could possibly cause

more problems in the future if we start modelling lighting conditions and angles i.e., the algorithm

should be able to recognize the crater in different lighting conditions and angles.

Figure 2 - Sample results

Figure 3 – Snapshot of our tagging algorithm in progress. Notice that 2 different craters get assigned the same ID.

5.2 Image Processing

Off-the-shelf feature detectors provided by OpenCV allow for decent crater findings, but need

significant tuning. This leads to questions regarding robustness, and this is where machine learning

might lead to better results.

We are also tried taking Fourier transforms of the image to try to better identify craters. The

spectral content of the images may help to filter out unwanted information, but also help us hone

in on craters and other features by identifying spectral patterns.

6. Conclusion

We conclude that traditional image processing techniques fail at identifying craters in an image.

We need lots of manual fine tuning and preprocessing to make it work. At the end of the day, we

want to automate this process and this is where traditional algorithms fail.

Using deep neural networks, with the TensorFlow Object Detection API, yields much better results

and it is also efficient and inexpensive. But, for tracking we need to individually track the motion

of craters. This is where this method lacks. There is no way to track craters. We implemented a

naïve, but preliminary, tagging algorithm that stores images and calculates mean squared error to

check if the crater has already been tagged. However, this will become computationally expensive

if run for a long time. It also lacking in robustness in that it cannot identify the same crater in

different lighting conditions and angles.

Sophisticated methods that do exist for this purpose are computationally expensive and make the

program unsuitable for our desired application. Further research needs to be done in this area

before we can successfully use our program in actual simulations.

Potential future research questions could explore more closely how feature tracking can help with

identification and tagging and how to handle different lighting conditions and angles for more

precise navigation. Finally, another topic that is more applicable would be implementing

navigations filters that use these results as inputs.

References

[1] Simonyan, Zisserman (2014) “Very Deep Convolutional Neural Networks for Large-Scale

Image Recognition”

[2] Szegedy, Liu et. al (2015) “GoogLeNet”

[3] Girshick, Donahue, et. al. (2014) “Rich feature hierarchies for accurate object detection and

semantic segmentation”

[4] Urbach, Stepinski (2009) “Automatic detection of sub-km craters in high resolution planetary

images”

[5] Kalal, Mikolajczyk, Matas (2010) “Tracking-Learning-Detection”

[6] Dor, Tsiotras “Application of ORB-SLAM to Spacecraft Non-Cooperative Rendezvous”

[7] Mur-Artal, Tardos (2016) “ORB-SLAM2: An Open-Source SLAM System for Monocular,

Stereo, and RGB-D Cameras”

[8] Ross Girshick (2015) “Fast R-CNN”

Datasets

[9] NASA Detecting Crater Impact Challenge

https://www.nasa.gov/feature/detecting-crater-impact-challenge

[10] COCO Dataset

http://cocodataset.org

Tools

[11] TensorFlow Object Detection API

https://github.com/tensorflow/models/tree/master/research/object_detection

[12] OpenCV

https://opencv.org

https://arxiv.org/find/cs/1/au:+Simonyan_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zisserman_A/0/1/0/all/0/1
https://github.com/tensorflow/models/tree/master/research/object_detection

